Evaluation of wastewater percent positive for assessing epidemic trends - A case study of COVID-19 in Shangrao, China

摘要

Objective This study aims to assess the feasibility of evaluating the COVID-19 epidemic trend through monitoring the positive percentage of SARS-CoV-19 RNA in wastewater. Methods The study collected data from January to August 2023, including the number of reported cases, the positive ratio of nucleic acid samples in sentinel hospitals, the incidence rate of influenza-like symptoms in students, and the positive ratio of wastewater samples in different counties and districts in Shangrao City. Wastewater samples were obtained through grabbing and laboratory testing was completed within 24 hours. The data were then normalized using Z-score normalization and analyzed for lag time and correlation using the xcorr function and Spearman correlation coefficient. Results A total of 2797 wastewater samples were collected. The wastewater monitoring study, based on sampling point distribution, was divided into two phases. Wuyuan County consistently showed high levels of positive ratio in wastewater samples in both phases, reaching peak values of 91.67% and 100% respectively. The lag time analysis results indicated that the peak positive ratio in all wastewater samples in Shangrao City appeared around 2 weeks later compared to the other three indicators. The correlation analysis revealed a strong linear correlation across all four types of data, with Spearman correlation coefficients ranging from 0.783 to 0.977, all of which were statistically significant. Conclusions The positive ratio of all wastewater samples in Shangrao City accurately reflected the COVID-19 epidemic trend from January to August 2023. This study confirmed the lag effect of wastewater percent positive and its strong correlation with the reported incidence rate and the positive ratio of nucleic acid samples in sentinel hospitals, supporting the use of wastewater percent positive monitoring as a supplementary tool for infectious disease surveillance in the regions with limited resources.

出版物
Infectious Disease Modelling
DOI
10.1016/j.idm.2024.11.001
2024
王静
无效内卷反抗者